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The recent advances in angle-resolved photoemission techniques allowed the unambiguous experimental
confirmation of spin-charge decoupling in quasi-one-dimensional �1D� Mott insulators. This opportunity stimu-
lates a quantitative analysis of the spectral function A�k ,�� of prototypical one-dimensional correlated models.
Here we combine Bethe Ansatz results, Lanczos diagonalizations, and field theoretical approaches to obtain
A�k ,�� for the 1D Hubbard model as a function of the interaction strength. By introducing a single spinon
approximation, an analytic expression is obtained, which shows the location of the singularities and allows,
when supplemented by numerical calculations, to obtain an accurate estimate of the spectral weight distribution
in the �k ,�� plane. Several experimental puzzles on the observed intensities and line-shapes in quasi-1D
compounds such as SrCuO2, find a natural explanation in this theoretical framework.
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I. INTRODUCTION

Since the theoretical prediction of the decoupling of spin
and charge excitations in one-dimensional �1D� models,1

many experiments have long sought to verify this effect.2

According to the spin-charge separation scenario, the va-
cancy �e+� created by removing an electron in a photoemis-
sion experiment decays into two collective excitations �or
quasiparticles�, known as spinon �s� and holon �h�, carrying
spin and charge degrees of freedom respectively. The recent
observation of a well-defined two-peak structure in the
angle-resolved photoemission spectra �ARPES� of the
quasi-1D materials SrCuO2 and Sr2CuO3 �Refs. 3 and 4� is
deemed a significant clue of spin-charge decoupling, con-
firming previous expectations.

However, other quasi-one-dimensional materials5 fail to
show distinct holon and spinon peaks, casting some doubt on
the interpretation of ARPES experiments based on spin-
charge decoupling. A number of puzzling features also sug-
gest that more physics, beyond the simple decay e+→s+h, is
involved in the photoemission process: the spectral functions
of SrCuO2 and Sr2CuO3 reported by Kim et al.3 and by Kidd
et al.4 systematically display broad line-shapes in contrast to
the sharp edges expected on the basis of the available calcu-
lations on model systems. The spectral intensity also appears
considerably weaker in a half of the Brillouin zone, a feature
often ascribed to cross-section effects.6

A quantitative theoretical understanding of ARPES in
low-dimensional systems is important and deserves a careful
investigation because ARPES provides a direct experimental
probe to the single particle excitation spectrum, allowing for
reliable estimates of the key parameters governing the phys-
ics of strongly correlated electrons: the electron bandwidth
and the Coulomb repulsion. Here we will focus on the 1D
Hubbard model, a simple lattice model defined by just two
coupling constants: the nearest neighbor hopping integral t
and the on-site Coulomb repulsion U:

H = − t�
i,�

�ci+1,�
† ci,� + h . c .� + U�

i

ni↑ni↓. �1�

Although several other terms, such as next-nearest hopping,
further orbital degrees of freedom, temperature, disorder or

lattice instabilities, would be necessary in a realistic model
of these materials, we believe that an accurate investigation
of the simplest Hamiltonians should be performed before
facing more challenging problems.

The theoretical studies aimed at the investigation of the
spectral properties of one-dimensional models are either
fully numerical such as Lanczos diagonalizations2 and den-
sity matrix renormalization group �DMRG� techniques,7 or
are carried out in the limiting cases of infinite8 or vanishing9

interaction U / t. In the former case, they suffer from severe
finite size effects, in the latter the interplay between charge
fluctuations and strong correlations is not satisfactorily taken
into account. Monte Carlo studies of dynamical properties of
quantum systems are instead hampered by the necessity to
perform an analytic continuation to real times.

In this paper, we provide the quantitative evaluation of the
full spectral function A�k ,�� of the 1D Hubbard model at
half filling for intermediate and strong coupling U / t.10 A
formalism based on the Bethe Ansatz solution,11 and supple-
mented by Lanczos diagonalizations, is developed and is
shown to provide a transparent description of the dynamical
properties of mobile charges in Mott insulators. From this
analysis we find that the 1D Hubbard model does indeed
contain the physics required for a quantitative interpretation
of photoemission experiments. In particular: �i� the underly-
ing free electron Fermi surface plays a key role in defining
the shape and the intensity of the ARPES signal, up to fairly
large effective couplings U / t; �ii� the power-law singularities
which characterize the spectral function in one dimension
give rise to intrinsically broad peaks, whose width is propor-
tional to the intensity of the line; �iii� ARPES data are ex-
tremely sensitive to the Hubbard parameters and allow for a
direct determination of the effective coupling constants in
quasi 1D materials. As a working example, we apply our
method to SrCuO2, where accurate ARPES data are
available,2 and we derive reliable estimates for t and U.

The plan of the paper is as follows. In Sec. II we present
and motivate the single spinon approximation which lies at
the basis of our method, deriving the predicted formal struc-
ture of the spectral function in one-dimensional models. Sec-
tion III shows how Lanczos diagonalizations provide a pre-
cise quantitative estimate of the quasiparticle weight required
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for the evaluation of the spectral function. Then, in Sec. IV
we discuss the weak coupling limit, where a thorough field
theoretical analysis is available. The application to the case
of SrCuO2 is performed in Sec. V, while in the Conclusions
we briefly discuss the generalization of our method to more
complex one-dimensional hamiltonians.

II. ANALYTICAL STRUCTURE OF THE SPECTRAL
FUNCTION

The dynamical properties of one �spin down� hole in the
half filled Hubbard model are embodied in the spectral func-
tion A�k ,�� which, at zero temperature, can be written as

A�k,�� = �
���1�	

�
�1�ck,↓��0��2��� − E1 + E0� , �2�

where ��0� is the ground state of the model at zero doping,
i.e., when the number of electrons N equals the number of
sites of the lattice L, E0 is the corresponding energy and
���1�	 represents a complete set of one-hole intermediate
states, of energies E1. The whole energy spectrum of the
Hubbard hamiltonian �1� can be obtained from the Lieb and
Wu equations.11 In the thermodynamic limit, its structure has
been thoroughly investigated in a series of papers by
Woynarovich12,13 �see also the comprehensive book by Es-
sler et al. Ref. 14�. In summary, the exact excitation spec-
trum at half filling and at arbitrary coupling U / t depends on
two sets of “rapidities” describing the charge and spin de-
grees of freedom respectively. The excitation energy is al-
ways written as the sum of contributions involving just two
elementary excitations, representing collective quasiparti-
cles: “holons” �of momentum kh and energy �h�kh�� and
“spinons” �of momentum Q� � �

2 , 3�
2 � and energy �s�Q��. The

simplest physical excitation created by the removal of an
electron of momentum k gives rise to one holon and one
spinon satisfying the momentum conservation equation k
=kh+Q. The total energy of this state is E1=E0+�h�kh�
+�s�Q�. Besides this suggestive “decay” mechanism of the
electron, other excited states also appear in the exact spec-
trum: they are either multispinon and multiholon states, or
states involving the creation of double occupancies.13 How-
ever, it is remarkable that the full excitation spectrum can be
always expressed in terms of �h�kh� and �s�Q�, showing that
spin-charge decoupling holds, in the Hubbard model, at all
values of U / t and at all energy scales.14 The two quasiparti-
cles, holon, and spinon, are both collective excitations in-
volving an extensive number of degrees of freedom and can
be approximately related to simple real space pictures of a
“hole” and an unpaired spin only in the strong coupling limit,
where spin-charge decoupling acquires a more intuitive
meaning. As U→0 the holon and spinon bands reduce to
simple analytical forms,11 closely related to the free particle
band structure: �h�kh�=4t cos�kh /2� and �s�Q�=2t�cos Q�.

While the whole energy spectrum of the Hubbard hamil-
tonian is known in detail, the matrix elements appearing in
Eq. �2� are of difficult evaluation. Moreover the summation
over the intermediate states formally involves a number of
terms exponentially large in N, making the exact implemen-
tation of the definition �2� impractical. Our approach, which

allows for the evaluation of the full spectral function in the
thermodynamic limit, is based on the single spinon approxi-
mation: i.e., we neglect the contribution to the spectral func-
tion coming from all multispinon excited states and all exci-
tations with complex rapidities, but we evaluate exactly the
matrix elements involving one holon and one spinon. The
accuracy of this method is tested a posteriori by use of a
completeness sum rule and can be estimated of the order of
few percents. Such a remarkable performance of the single
spinon approximations is not unusual in one-dimensional
physics: a known example is provided by the Haldane-
Shastry spin model �HSM�,15 where each intermediate state
contributing to the dynamical spin correlation is completely
expressible in terms of eigenstates of the HSM with only two
spinons. In this case, only a small O�L� number of eigen-
states contribute to the exact dynamical spin correlation
function as proved in Ref. 16. Similarly, in our approach, the
most relevant intermediate states are expressible is terms of
eigenstates of the Hubbard model with only one spinon and
one holon excitations.

A first clue on the structure of the spectral function in
one-dimensional models can be obtained by analyzing the
U→� limit, where double occupancies are inhibited and
several exact results are available.8 At half filling �N=L� the
Hubbard hamiltonian is mapped onto a Heisenberg Hamil-
tonian: each site is singly occupied and the ground state is a
nondegenerate singlet of zero momentum.17 When a hole of
momentum kh is created, all the eigenfunctions of the Hub-
bard hamiltonian �with periodic boundary conditions� can be
written as18

��1� =
1
�L

�
x,�yi	

eikhx	H�y1, . . . ,yM��x,�yi	� , �3�

where �x , �yi	� represents the configuration of L−1 electrons
defined by the positions of the M =L /2 spin up ��yi	� and of
the hole �x�. The amplitude 	H is a generic eigenfunction of
the Heisenberg hamiltonian on the “squeezed chain,” i.e., on
the L−1 site ring defined by all the sites occupied by an
electron. The intermediate states ��1� entering the spectral
function �2� have momentum −k relative to the ground state
at half filling. Due to the factorized form of eigenfunctions
�3� the total momentum of the state satisfies k=kh+Q where
Q is the momentum of the Heisenberg eigenfunction 	H,
expressed in integer multiples of 2� / �L−1� in finite chains.
In the thermodynamic limit the energy of the intermediate
state is E1=E0+�h�kh�+�s�Q�, where, to lowest order in J
=4t2 /U, the first �holon� contribution is just the kinetic en-
ergy of a free particle ��h�kh�=2t cos kh� and the second one
�spinon� is the energy of the eigenstate 	H referred to the
ground-state energy of the Heisenberg ring of L sites.19 This
analysis shows, in an intuitive way, the origin of momentum
and energy conservation in the decay process of the vacancy
and suggests that, in the U→� limit, the most relevant con-
tributions to the sum of intermediate states in Eq. �2� come
from the lowest-energy eigenstates 	H of the Heisenberg
Hamiltonian for the L−1 allowed momenta Q= 2�

L−1n, �n
=0. . .L−2�. Accordingly, the sum over an exponentially
large set of eigenstates ���1�	 in Eq. �2� can be �approxi-
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mately� replaced by a sum over L−1 single spinon states.
This special set of intermediate states ��1�, which we argue
provides the dominant contribution to the spectral weight for
each spinon momentum Q, will be referred to as �−k ,Q� in
order to emphasize the two quantum numbers which
uniquely identify them. The single spinon approximation can
be easily tested in the U→� limit8 where it proves ex-
tremely accurate. In the next section we will show that it
remains fully satisfactory also at finite coupling. In fact, it is
known14 that the eigenstate structure of the Hubbard model
displays a remarkable continuity in U / t, the only singular
point being the �trivial� free particle limit U=0. However,
when charge fluctuations are allowed for, by lowering the
strength of the on-site repulsion U, the identification of the
single spinon states �−k ,Q� is not easy, because the spinon
momentum Q is not a good quantum number any more, al-
though it can be still formally defined on the basis of the
Bethe Ansatz solution of the Hubbard model.13 The key ob-
servation, which will be exploited in the next section, is that
the correct single spinon states can be identified at finite U
via Lanczos or DMRG calculations by following adiabati-
cally the evolution of the Heisenberg states as U is gradually
decreased.

Keeping only the single spinon states in the summation of
Eq. �2�, the spectral function in the thermodynamic limit
becomes

A�k,�� =� dQ

2�
Zk�Q���� − �h�k − Q� − �s�Q��

=
1

2�
�
Q�

Zk�Q��
�vh�Q� − k� + vs�Q���

. �4�

Where we have defined the quasiparticle weight as the ma-
trix element

Zk�Q�  lim
L→�

�L − 1��
− k,Q�ck,↓��0��2. �5�

The sum in Eq. �4� runs over all the solutions Q��k ,�� of the
algebraic equation

� = �h�k − Q� + �s�Q� , �6�

where �h�kh���s�Q�� is the known holon �spinon� excitation
energy13 and vh�kh�=

d�h

dkh
, �vs�Q�=

d�s

dQ � the associated velocity.
Equation �4� is the main result of this work: an explicit and
computable expression for the spectral function of one-
dimensional models. In the special case of the Hubbard
model, the Bethe Ansatz solution directly provides spinon
and holon dispersions in the thermodynamic limit further
simplifying the evaluation of the spectral function. Due to
the presence of a spinon Fermi surface, the dispersion rela-
tion �s�Q� is defined only in the interval �

2 
Q

3�
2 ,20 it

vanishes at the boundaries and has a single maximum at Q
=�, while �h�kh� is an even and periodic function in the
whole range −�
kh
� with maximum at k=0.12,13 The
only missing ingredient in Eq. �4� is the quasiparticle weight
Zk�Q� which defines the line-shape and intensity of the spec-
tral function. Previous studies21 have shown that in spin iso-
tropic models such as the Hubbard model, the quasiparticle

weight is a regular function with square root singularities at
the spinon Fermi surface Q=��� /2. This implies that
A�k ,�� has power-law singularities too, whenever either Q�

defined by Eq. �6� lies at the spinon Fermi surface, or when
the total excitation velocity vh�Q�−k�+vs�Q�� vanishes. In
both instances, square root divergences are expected:22 in the
former case the location of the singularity identifies the ho-
lon dispersion via �6� �=�h�k+��

�
2 �; in the latter case the

singularity is trivially due to band structure effects and does
not necessarily corresponds to a pure spinon contribution as
often assumed. However, at small to moderate interactions
U / t, the holon velocity �vh�kh�� displays an abrupt drop
around kh�� �Ref. 13� placing the band lower edge close to
Q��+k, i.e., at ���h���+�s��+k�, thereby following the
spinon band for 0
k


�
2 . This particular feature of the Hub-

bard model dispersion is apparent in the shape of the holon
spectrum12 which sharply bends at kh� �� so to display a
vanishing charge velocity at band edges. This also agrees
with the “relativistic” form of the holon spectrum predicted
by bosonization at weak coupling,9 as reported in Eq. �8�.
The expected location of the square root singularities of the
spectral function in the �k ,�� plane is shown for few values
of the coupling in Fig. 1. The holon branch �shown as full
circles in the figure� marks precisely the holon excitation
spectrum �h�kh� while the location of the singularities due to
the band structure �shown as crosses in the figure� differs
from the spinon �s�Q� dispersion by less than 0.1t. Note also
that the curvature of the “spinon branch” displays a signifi-
cant dependence on U / t, allowing for a rather precise experi-
mental determination of the effective coupling ratio. There-
fore we conclude that precise photoemission data, able to
identify the singularities of the spectral function, do provide
direct information on both holon and, within a good approxi-
mation, also spinon excitations.

The full holon bandwidth is always 4t at all couplings,
due to the particle-hole symmetry of the Hubbard model but
the upper and lower branches of the holon band are not sym-
metrical at finite U. This observation is relevant for the cor-
rect interpretation of photoemission experiments, because an
estimate of the effective hopping integral t is usually per-
formed by measuring the half bandwidth of the upper holon
branch23 leading to a sizable overestimate of t. In Fig. 2 we
show the bandwidth Wh of the upper holon branch �i.e.,
�h�� /2�−�h���� and the ratio between the spinon and the
holon bandwidths Ws /Wh as a function of the coupling U / t.
Both quantities, which allow for a direct estimate of t and

FIG. 1. �Color online� Location of the singularities of the spec-
tral function in the thermodynamic limit for three values of U in the
plane �k ,E=−��. The �green� circles correspond to the singularities
of the Zk�Q� �holon branch�, while the black stars to the extrema of
the excitation spectrum.
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U / t from ARPES, show a remarkable �even nonmonotonic�
dependence on the coupling constants. By comparing these
results with the dispersion curves for SrCuO2 reported in
Ref. 3 we can estimate the Hubbard effective coupling con-
stants appropriate of this material: t�0.53 eV and U / t�7.

III. QUASIPARTICLE WEIGHT FROM LANCZOS
DIAGONALIZATION

Unfortunately, the formal Bethe Ansatz solution does not
lead to a practical way for the evaluation of the quasiparticle
weight �5� at arbitrary couplings and therefore we resort to
Lanczos diagonalizations in lattices up to L=14 sites. As
previously noticed, we first have to devise a method to select
the correct single spinon states at finite coupling U / t, for
these states are not identified by a good quantum number at
finite U. Our method is based on an adiabatic procedure
starting from the strong coupling limit. We first perform a
Lanczos diagonalization on the �L−1� site Heisenberg model
in the symmetry subspace of total momentum Q, leading to
the numerical determination of 	H and of the exact eigen-
states of the one-hole Hubbard model for U→� via Eq. �3�.
In this limit, the single spinon states are indeed the lowest
energy eigenstates at fixed spinon momentum Q and can be
easily obtained by Lanczos �or DMRG� technique, while at
finite U the relevant intermediate states are not necessarily in
the low-excitation energy portion of the Hubbard spectrum.
Then we take advantage of the continuity of the one spinon
states between the weak and strong coupling limit by adia-
batically lowering the interaction strength U and performing
successive Lanczos diagonalizations for smaller and smaller
couplings Un. At the nth step we keep the exact eigenstate
having the largest overlap with the eigenstate at the �n
−1�th level. In this way we are able to identify the single
spinon states down to small values of U� t, each state being
uniquely identified by Q, i.e., by the momentum of the “par-
ent” Heisenberg eigenstate.

A check on the validity of the single spinon approxima-
tion comes from the completeness condition on the interme-
diate states:

n↓�k� = 
�0�ck,↓
† ck,↓��0� = �

���1�	
�
�1�ck,↓��0��2

� �
Q

�
− k,Q�ck,↓��0��2 =
1

L − 1�
Q

Zk�Q� , �7�

where n↓�k� is the momentum distribution of the down spins
at half filling and the equality holds if and only if the single
spinon states included in the sum via the definition of the
quasiparticle weight Zk�Q� �5� exhaust the spectral weight at
each k. The amount of violation of this sum rule quantifies
the weight of all the neglected states in the Hilbert space due
to the single spinon approximation. In Fig. 3 we plot n↓�k�
and 1

L−1�QZk�Q� restricted to the one spinon states: the vio-
lation of the completeness condition is smaller than 0.01 at
all k’s.24 Note how, even at fairly large values of U / t, the
momentum distribution is considerably depressed for k larger
than the free electron Fermi momentum kF= �

2 , strongly re-
ducing the spectral weight in the second half of the Brillouin
zone. This feature is consistent with the photoemission ex-
periments performed with high energy photons.3,6 Con-
versely, in the strong coupling limit U→�, the momentum
distribution becomes flat, n↓�k�=1 /2, washing out this effect.

The dependence of the quasiparticle weight on the
strength of the Coulomb repulsion has been investigated and
is summarized in Fig. 4 for strong and intermediate U / t and
for different lattice sizes. The quasiparticle weight has been
evaluated by Lanczos diagonalization on lattices ranging
from L=6 to L=14 sites. By using standard periodic bound-
ary conditions, the total momentum of the state would be
quantized in units of 2� /L, making size scaling impractical.
In order to avoid this problem we have adopted skewed
boundary conditions: given an arbitrary hole momentum k
we choose the flux at the boundary in such a way to match k
with the quantization rule. Figure 4 reveals an astoundingly
negligible size dependence and the expected vanishing of the
quasiparticle spectral weight outside the spinon Fermi sur-
face, with singularities at the Fermi momenta. While Zk�Q�
is almost independent on k at large U, as expected,8 it shows
more structure for realistic values of U / t. The further peak
�or shoulder� present for k

�
2 is indeed reminiscent of the

free Fermi nature of the electrons at U=0. In the free particle
limit, only one state provides a finite contribution to the spec-
tral function: the holon sits at the bottom of the band �kh
=�� and the quasiparticle weight Zk�Q� reduces to a delta
function at Q=�+k. When such a form of Zk�Q� is substi-
tuted in Eq. �4�, the known free particle result is recovered.
Remarkably, a remnant of the free particle peak in Zk�Q� is
still visible at U=7t, as shown in Fig. 4�b�.

FIG. 2. Panel �a�: holon bandwidth Wh=�h�� /2�−�h��� as a
function of U / t. Panel �b�: ratio between the spinon bandwidth
Ws=�s��� and Wh as a function of U / t.

FIG. 3. �Color online� Momentum distribution n↓�k� �black open
circles� and 1

L−1�QZk�Q� �red triangles� versus the hole momentum
k from Lanczos diagonalization, for U=7t in a L=14 ring.
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IV. WEAK COUPLING LIMIT

The Green’s function of one-dimensional models has been
thoroughly investigated by bosonization methods: while in
the Luttinger liquid regime its asymptotic form is character-
ized by power-law tails,1 precisely at half filling the Green’s
function is known to display a more complex behavior due to
the presence of a gap in the holon spectrum. At weak cou-
pling, the holon dispersion near the bottom of the band
shows a “relativistic” structure:

�h�kh� = �vh
2�kh

2 + m2, �8�

where m is the charge gap and �kh=kh�� is the holon mo-
mentum measured from the bottom of the band. Note that the
holon spectrum �8� is shifted by �=U /2 with respect to our
previous definition. In Fig. 5�a� we plot the exact Bethe An-
satz spectrum at U=3t and the form �8� predicted by
bosonization with suitably chosen parameters m and vh.

In order to compare the results of our single spinon ap-
proximation with the bosonization form, it is convenient to
introduce the single hole Green’s function in imaginary time,

G↓�k,�� = 
�0�ck,↓
† e−�H−���ck,↓��0� . �9�

According to bosonization,9 the Green’s function G↓�k ,�� of
a hole of momentum close to kF=� /2 acquires a factorized
form in real space:

G↓
R�x,��  � dk

2�
G↓

R�k,��eikx = ei�/2xGh�x,��Gs�x,�� ,

�10�

where the superscript R identifies the contribution to the
Green’s function due to right moving holes. Here, Gh and Gs

just depend on holon and spinon degrees of freedom, respec-
tively. The spinon term is simply given by

Gs�x,�� =
1

�vs� + ix
, �11�

while the holon contribution is predicted, by the form factor
approach, to behave as

Gh�x,�� = ��m

vh
�

−�

�

d�e��/2−m� cosh �−imx/vhsinh ��, �12�

with ��0.0585. . ..9 The question now arises whether our
single spinon approximation is consistent with such a factor-
ized form. By inserting a complete set of intermediate states
into the definition �9� and adopting the single spinon ap-
proximation, the full Green’s function in imaginary time can
be written as

G↓�k,�� =
1

L
�
Q

Zk�Q�e−��h�kh�+�s�Q���, �13�

where the momentum conservation relation k=kh+Q is un-
derstood and the holon spectrum �h�kh� is now referred to the
chemical potential �. Notice that, due to momentum conser-
vation, the combined requirements of having k�kF= �

2 and
kh�−� �i.e., the hole sits near the bottom of the band� force
Q� 3�

2 . By substituting the asymptotic forms �8� and �s�
3�
2

−q�=vsq for q�0 we get

G↓
R�x,�� = ei�/2x m

vh
�

0

� dq

2�
e−�iqx+vsq���

−�

� d�

2�
Zk�Q�

�cosh �e�−imx/vhsinh �−m� cosh ��, �14�

where we set �kh− m
vh

sinh �. This form does indeed factor-
ize in a holon and spinon part, as predicted by bosonization,
provided the quasiparticle weight does,

FIG. 4. �Color online� Panel �a�: Zk�Q� versus spinon momen-
tum Q for U=100t and different lattice sizes ��: L=6, �: L=8, �:
L=10, �: L=12, �: L=14�. Open �green� symbols for total momen-
tum k=� /4 and full �black� symbols for k=0. Lines are polynomial
fit to Lanczos data. Skewed boundary conditions are used in order
to fix the same total momentum of the state −k �relative to half
filling� for all L’s. Panel �b�: same as �a� for U=7t. Panel �c�:
binding energy at fixed k referred to half filling versus spinon mo-
mentum Q in the thermodynamic limit E=E0−E1 for U=100t.
Panel �d�: same as �c� for U=7t.

FIG. 5. �Color online� Panel �a�: Holon spectrum �h�kh� of the
Hubbard model at U=3t from Bethe Ansatz �shifted by �=U /2�
compared to the Lorentz form �8�. The fitting parameters are m
=0.316t and vh=2.43t. Panel �b�: Dimensionless holon quasiparticle

weight Z̄h=� m
vh

Zh in the single spinon approximation for U=3t and
lattice sizes L=10 �full squares�, L=12 �empty circles�, L=14 �full
circles�, compared to the bosonization result �16� �line�.
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Zk�Q� � Zh�kh�Zs�Q� . �15�

Notice that our approach, being based on a numerical evalu-
ation of the quasiparticle weight, does not allow for an inde-
pendent demonstration of such a factorized form. We just
observe that the bosonization approach and the single spinon
approximation lead to the same result if we assume that Eq.
�15� holds. Following Ref. 14 we argue that the factorization
of the quasiparticle weight at low energies �15� reflects the
trivial structure of the holon-spinon scattering matrix in this
limit.

As previously noticed, the spinon contribution to the qua-
siparticle weight gives rise to the square root divergence at
the spinon Fermi surface, with leading behavior Zs�

3�
2 −q�

�q−1/2 for q�0 which correctly reproduces Eq. �11� when
the ultraviolet cutoff in Eq. �14� is disregarded. Matching
Eqs. �12� and �14� then selects a unique form of the holon
quasiparticle weight,

Zh�kh� = �2vh

��h�kh� − vh�kh

�h�kh�
, �16�

with �h�kh� given by Eq. �8�. The scale factor in Eq. �16� has
been fixed by evaluating the Green’s function in the �→0
limit, where it coincides with the momentum distribution. In
Fig. 5�b� we compare Eq. �16� with the numerical results for
Zh�kh� obtained by Lanczos diagonalization at U=3t. No fit-
ting parameters have been used: In order to obtain Zh�kh� we
first evaluated Zk�Q�, as discussed in Sec. III, then we di-
vided the result by Zs�Q��q−1/2 evaluated at the spinon mo-
mentum Q closest to the spinon Fermi point QF= 3�

2 . The two
parameters vh and m are independently obtained from the
holon spectrum �also shown in Fig. 5�a��. As usual the Lanc-
zos data display a very small size dependence and allow for
a precise identification of the holon quasiparticle weight
Zh�kh�. The agreement between the two expressions is re-
markable for �kh�0 while some discrepancy is found for
negative �kh. Note however that the asymptotic form of the
holon quasiparticle weight �16� holds only at low energies
and weak coupling, while the comparison shown in Fig. 5 is
performed for U=3t. The results at lower values of U / t are
plagued by severe finite-size effects: in the U→0 limit, the
holon mass m vanishes exponentially and the dimensionless
momentum scale m /vh vanishes as well. Therefore, at very
weak coupling, the relevant holon momenta are constrained
in an extremely small interval around kh= ��, a range not
easily accessible due to the momentum quantization rule in
finite Hubbard rings.

V. RESULTS FOR SrCuO2

We are now ready to compare our results for the spectral
function of the 1D Hubbard model with precise photoemis-
sion data recently obtained for SrCuO2.3 A preliminary study,
based on the strong coupling limit of the Hubbard model,
pointed out some discrepancies, related to the peak heights
and widths.3 Figure 6 shows the singularity loci of the 1D
Hubbard model with the parameters t=0.53 eV and U
=3.7 eV, together with the ARPES results from Kim et al.3

The nice agreement suggests that this material indeed repre-

sents a good experimental realization of the simple one-
dimensional Hubbard model. The effects due to interchain
coupling, phonons, finite temperature, and other perturba-
tions appears rather small and mostly limited to the spinon
branch. We remark that the same material has been already
theoretically investigated on the basis of the Hubbard and t-J
model by several groups3,25,26 leading to different sets of
parameters both for the hopping integral 0.3 eV� t
�0.7 eV and for the Coulomb repulsion 2 eV�U
�6.5 eV. Our analysis shows that both spin and charge fluc-
tuations play a key role in determining the line-shape of the
spectral function of the Hubbard model, even at moderately
high values of the coupling U / t.

In Fig. 7 the spectral function has been plotted versus the
binding energy E=−� for three representative values of the
total hole momentum k. The experimental line broadening
reported in Ref. 3 has been also included in the Hubbard
model results, leading to a merging of close peaks. The den-
sity plot clearly reproduces the overall shape defined by the
singularities of the spectral function shown in Fig. 6. As
expected, most of the spectral weight is indeed concentrated
in the first half of the Brillouin zone between the holon and
the spinon band. Although the relative intensity of the
ARPES signal at the two singularities depends on the details
of the band structure, the power-law nature of the diver-
gences implies that the intrinsic width of each peak is always
comparable with the separation between the holon and the
spinon branch ����h�k+ �

2 �− ��h���+�s��+k��. The aver-
age intensity can be estimated on the basis of the sum rule
�7� and scales as ����−1/2, getting smaller when the two
branches separate, as shown both in experiments3 and in nu-
merical calculations.7

VI. CONCLUSIONS

The single spinon approximation, combined to Bethe An-
satz results and Lanczos diagonalizations allows to obtain
very accurate results for the dynamic properties of a single
hole in the one-dimensional Hubbard model. The Lehmann
representation of the spectral function �2� shows that two
separate ingredients combine to define the overall shape of
A�k ,��: the excitation spectrum and the quasiparticle weight.
The idea at the basis of our method is to limit the size effects

FIG. 6. �Color online� Locus of singularities of the spectral
function for the Hubbard model at U=3.7 eV and t=0.53 eV
�open circles� compared to the experimental results by Kim et al.
�Ref. 3� �full circles� for k�=0.1.
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that plague numerical results by dealing with these two quan-
tities separately: in the 1D Hubbard model the excitation
spectrum is given exactly by the Bethe Ansatz equations in
the thermodynamic limit,11 while the quasiparticle weight is
obtained, in the single spinon approximation, by Lanczos
diagonalization. Size effects are shown to be negligible and
the accuracy of the approximation can be checked a poste-
riori by a frequency sum rule �7�. Our expression for the
spectral function of the 1D Hubbard model �4� is consistent
with the structure predicted by bosonization9 at weak cou-
pling, provided the quasiparticle weight Zk�Q� factorizes as
shown in Eq. �15�. A numerical test carried out at U=3t does
not show a convincing quantitative agreement with the result
obtained by the form factor approach,9 possibly due to the
difficulty to achieve the U→0 limit.

The extension to finite doping is straightforward but in
principle this approach can be also generalized to other fer-
mionic lattice models, in one or more dimensions, provided
the relevant states entering the quasiparticle weight in the
strong coupling limit can be easily classified. This would be
the case of the extended Hubbard model �i.e., a Hubbard
model with nearest neighbor Coulomb repulsion� or in the

presence of lattice dimerization. Clearly, for non integrable
models, no analytical information on the excitation spectrum
is available and a size scaling on the energy spectrum is also
required. A study of such generalizations may be useful to
understand the role of some perturbation on the spectral
function of correlated electron models.

The specific example of SrCuO2 shows that our method
allows for a direct comparison between theory and ARPES
experiments and for an accurate determination of the Hub-
bard parameters which best describe the hole dynamics in the
material. The spectral function derived here provides a natu-
ral explanation of the observed reduction in the spectral
weight in a half of the Brillouin zone and of the broad line-
shape detected in experiments. Future applications of this
method to the case of cold atoms in optical traps may help in
pointing out the peculiar features of one-dimensional physics
in other experimental realizations of correlated one-
dimensional Fermi gases.
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